# **Operation Amplifier using Discrete Components**

Guru prasad Assistant Professor, MIT Manipal

## Abstract

This article explains how to realize an operational amplifier using discrete components. General purpose BJT transistors, resistors, diode and capacitor are used to build op-amp. A three stage structure is assumed. Simulation results show that it provides a open loop gain of 130 dB with a phase margin of  $70^{\circ}$ . The slew rate measured to be  $2V/\mu s$ .

# Introduction

Operational amplifier is a very high gain amplifier typically used in a negative feedback system to achieve accurate gain. It's basic operation is listed as below-

- 1. Amplify only the voltage difference between two signals and reject any common between them.
- 2. Since not used with coupling capacitors, bring back the DC voltage level to origin to accommodate large output swing.
- 3. Since Operational amplifier is a voltage controlled voltage source it should offer low output impedance.

A typical op-amp should contain functional blocks as shown in Figure 1. The Differential amplifier, level shifter and buffer perform the jobs listed above respectively.



Figure 1: Op-amp Functional Block Diagram

Figure 2 shows the basic Differential amplifier.  $I_0$  denotes the tail current source which decides the common mode rejection ratio of Op-amp.  $I_0$  can be realized using transistor current mirror technique. The load resistors  $R_c$  can also be replaced by active load (pnp transistors).

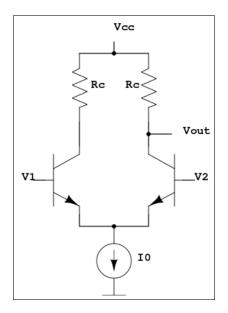



Figure 2: Differential amplifier

Figure 3 shows the basic level shifter which not only shifts the DC level but also provides small signal gain.  $I_0$  is active load can be replaced by npn transistor.

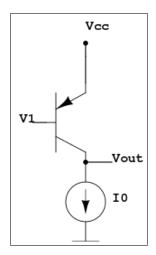



Figure 3: Level Shifter

Figure 4 shows a typical buffer which is a common collector stage. An active load npn transistor can replace  $I_0$ .

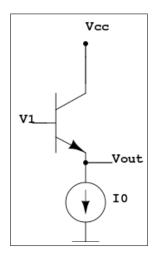



Figure 4: Buffer

#### **Circuit Design**

Figure 5 shows the complete circuit diagram of op-amp. List of components are

- 1. NPN transistor 2N2222
- 2. PNP transistor 2N3906
- 3. Silicon diode 1N914
- 4. Resistors -10% tolerance  $20\Omega$ ,  $5.11k\Omega$ ,  $9.31k\Omega$
- 5. Capacitor 400pF
- 6. Batteries -+5V and -5V

Since the bias current of last two stages is different from the differential amplifier stage [5 times more], Diode with resistors  $5.11k\Omega$  and  $20\Omega$  are used to bias active load npn transistors in last two stages. If high frequency small signal model of op-amp is analyzed, it can be shown that the system has two dominant poles and makes it unstable. Hence a 400 pF miller capacitor is added in the circuit as shown in Figure 5 to make pole at the output of differential amplifier as single dominant pole and push the other pole beyond the unity gain bandwidth range.

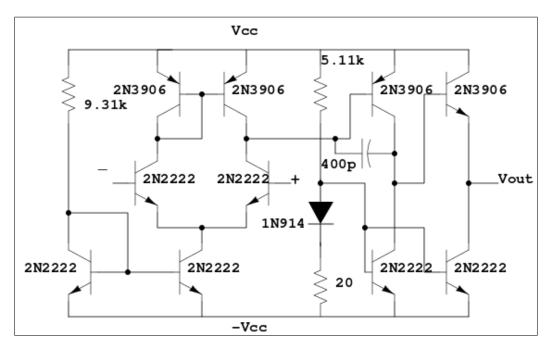



Figure 5: Complete Op-amp circuit diagram

```
The op-amp is simulated using Ng-spice and code is given below.
*****
                      *****
*Ng spice code for op-amp
V1 Vcc 0 5
V2 Vee 0 -5
V3 Vin 0 0
Q1 1 0 6 0 2N2222
Q2 3 0 6 0 2N2222
Q3 6 5 Vee 0 2N2222
Q4 5 5 Vee 0 2N2222
Q5 2 3 Vcc 0 2N3906
Q6 Vcc 2 Vout 0 2N2222
Q7 3 1 Vcc 0 2N3906
Q8 1 1 Vcc 0 2N3906
Q9 2 4 Vee 0 2N2222
Q10 Vout 4 Vee 0 2N2222
C1 2 3 400p
D1 4 7 1N914
R1 Vcc 5 9.31K
R2 Vcc 4 5.11K
R3 7 Vee 20
.model 2N2222 NPN(IS=1E-14 VAF=100 BF=200 IKF=0.3 XTB=1.5 BR=3 CJC=8E-12 CJE=25E-12
+TR=100E-9 TF=400E-12 ITF=1 VTF=2 XTF=3 RB=10 RC=.3 RE=.2 Vceo=30)
.model 2N3906 PNP(IS=1E-14 VAF=100 BF=200 IKF=0.4 XTB=1.5 BR=4 CJC=4.5E-12 CJE=E-11
+RB=20 RC=0.1 RE=0.1 TR=250E-9 TF=350E-12 ITF=1 VTF=2 XTF=3 Vceo=40)
.model 1N914 D(Is=2.52n Rs=.568 N=1.752 Cjo=4p M=.4 tt=20n Iave=200m Vpk=75)
.control
op
```

3

## **Simulation Results**

*gnuplot* is used to plot the simulation output. Figure 6 shows the simulation result of op amp. The op-amp performance is tabulated in Table 1.

| Parameter            | Obeserved Values                          |
|----------------------|-------------------------------------------|
| Open loop Gain       | 130 dB and 1 MHz GBW                      |
| Phase Margin         | 70 <sup>0</sup>                           |
| Slew Rate            | $+2V/\mu s$ and $-1V/\mu s$               |
| Offset Voltage       | 100 mV                                    |
| CMRR                 | 110 dB                                    |
| Temperature Response | Bias Current varies at $4mA/100^{\circ}C$ |

Table 1: Op-amp performance

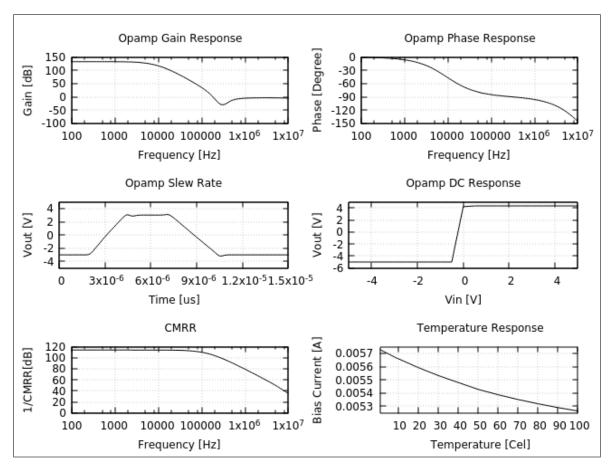



Figure 6: Simulation Results

reset unset key set grid set multiplot layout 3,2 rowsfirst scale 1,1 set xrange [100:1000000] set xlabel "Frequency [Hz]" set format x " set xtics 10 set logscale x set ylabel "Gain [dB]" set title "Opamp Gain Response" plot 'opamp.data' using 1:(20\*log(\$2)) smooth bezier lc rgb 'black' set xrange [100:1000000] set xlabel "Frequency [Hz]" set format x " set xtics 10 set logscale x set ytics 30 set ylabel "Phase [Degree]" set title "Opamp Phase Response" plot 'opamp1.data' using 1:2 smooth bezier lc rgb 'black' set xrange [0:0.000015] set xtics 0.000003 unset format xy unset logscale x set yrange [-5:5] set ytics 2 set xlabel "Time [us]" set ylabel "Vout [V]" set title "Opamp Slew Rate" plot 'opamp2.data' smooth bezier lc rgb 'black' set xrange [-5:5] set xtics 2 set yrange [-6:5] set ytics 2 set xlabel "Vin [V]" set ylabel "Vout [V]" set title "Opamp DC Response" plot 'opamp3.data' w l lc rgb 'black' set xrange [100:1000000] set xlabel "Frequency [Hz]" set yrange [0:120] set ytics 20 set format x " set xtics 10 set logscale x set ylabel "1/CMRR[dB]" set title "CMRR"

gnuplot code for producing the above plot is given below

All \*.data files are generated by Ng-spice.

# Conclusion

In this work an effort has been made to realize an op-amp using discrete BJTs and other components. Simulation results have shown that the performance of deigned op-amp is good. As a future work the same can be implemented on a Printed circuit board and physically be verified.

## Reference

- 1. Sedra and Smith Micro-Electronics Circuits 5th Edition, Oxford Publisher, 2010.
- 2. Ngspice version 26-user manual.
- 3. Gnuplot version 5.0-user manual.
- 4. 2N2222, 2N3906 and 1N914 data sheets.